Storing Electrical Energy: Underwater Compressed Air

This is similar in principle to conventional compressed air energy storage: air is pumped into a reservoir, and the energy later retrieved by expanding the air from the reservoir through turbines (or other air motors) driving generators. The turbine/generator sets may well be the same machines as the pumps.

If the reservoir is placed at the bottom of the sea or a lake, the pressure of water on the outside of the vessel reduces the stress on the walls. If the reservoir is flexible, it can simply collapse as the air is withdrawn, and reinflate as it’s refilled, with the air remaining at almost constant pressure. This avoids the need for strength to keep the water out when the vessel is empty. Because the external pressure on the bottom of the reservoir is higher than that on the top (the difference is the buoyancy of the air) there are some stresses on the container, but they’re very much smaller than the stresses on a normal pressure vessel.

The energy stored in an underwater constant pressure reservoir is more than is stored in a normal, constant volume reservoir. (The reason for this is covered in Underwater Compressed Air Maths.) As well as storing more energy than a rigid air reservoir, this kind of reservoir means you can use a pump/turbine system designed to work with a constant pressure rather than a variable one. Such a system is considerably simpler and more efficient.

Development work on such systems is in progress:,[1] and

Even more simply, the reservoir could be rigid, with water entering the vessel as the air is consumed, and the water being pushed out by the air as the vessel is filled with air. This scheme would also operate at near constant pressure. In this case there is potential for some loss due to air dissolving in the water, but this would only be an issue for long-term energy storage, and there are ways to reduce the effect almost to zero.

As with all engineering projects, there are potential hazards; but they are minuscule compared to those associated with fossil fuel or nuclear systems. There are also potential issues with fouling of the vessel with water plants or animals such as mussels, but again there are ways to avoid this – without resorting to the kind of environmentally unfriendly antifouling used on boats! See Underwater Compressed Air Engineering.

The area of seabed suitable for such systems is vastly greater than the area of land available for pumped storage reservoirs, and most of it is at much greater depths than the elevation of those reservoirs. If such systems can be built economically, they are capable of providing all the energy storage we will need for the foreseeable future, while affecting only a minuscule fraction of the seabed environment, and in a fairly benign way.

Unfortunately for the UK, you have to go a considerable distance offshore to find much really deep water (many other countries have plenty, close inshore[2]), but there’s a fair amount of reasonably deep water in the North Channel (between Scotland and Northern Ireland) and the Firth of Clyde[3]. There are also several lakes, mostly in Scotland, with enough fairly deep water to accommodate a considerable storage capacity – substantially more than the amount of conventional pumped hydro that could reasonably be developed – see Potential Sites.

(Note that such schemes are not generally in any conflict with pumped hydro schemes, even where the same lakes are involved – and in some circumstances may be synergistic with them.)

[1] But note, this interesting page has a massive error, giving the energy contained in a 30m sphere of compressed air at 700m depth as just 20MWh; I’ve contacted the webmaster to correct this – the correct figure is 144MWh! Their figure must have been using the wrong formula (one that’s a common error...)

[2] Norway has the Norwegian Trench – thousands of square kilometres, up to 700m deep – off its south coast. It’s an important fishing ground, but only a minuscule fraction of it would be needed for vast energy storage – and while fishing in the vicinity of the storage sites would probably be blocked, the fish themselves would be unlikely to be affected, effectively giving them a safe haven.

Spain has enormous areas of water over 4,000m deep not far off its northern coast; France has a substantial area of water over 2,000m deep off its south east. Many but by no means all other countries are well endowed in this respect.

[3] Both these sites have a potential issue with old munitions which were dumped there – but this is a problem which has already been successfully handled during the laying of submarine communication cables.